题目描述
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
1.零食按照1...N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每天可以从盒子的任一端取出最外面的一个.
2.与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
3.每份零食的初始价值不一定相同.
约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
第i份零食如果在被买进后的第a天出售,则它的售价是Vi×a.
Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.
输入格式
第一行,一个正整数n,表示零食的数量 接下来n行,每行一个正整数Vi,表示第i个零食的初始价值。
输出格式
一行一个正整数,表示John能得到的最多钱数。
样例
input
5
1
3
1
5
2
output
43
提示
区间dp
【数据范围】
1<=n<=2000 1<=Vi<=1000