题目描述
小TY突然想画画,他有独特的艺术风格,他从N×N空白画布开始,其中0表示画布的空单元格。然后他会在画布上绘制恰好矩形,每个颜色是1到N×N中的一个。他每次可以选择任意一种未使用过的颜色进行绘画。例如,他可以从颜色2的矩形开始,画出这样的画布:
2 2 2 0
2 2 2 0
2 2 2 0
0 0 0 0
然后他可以用颜色7绘制一个矩形:
2 2 2 0
2 7 7 7
2 7 7 7
0 0 0 0
然后他可以在颜色3上绘制一个小矩形:
2 2 3 0
2 7 3 7
2 7 7 7
0 0 0 0
每个矩形都平行于画布边缘,而且矩形可以与整个画布一样大或者像一个单元一样小。每个颜色从1到正好使用一次,后来的颜色可能完全覆盖一些较早画上的颜色。
现在已知画布的最终状态,请计算有多少种颜色可能被第一个被画。
输入格式:
第一行一个整数N,表示画布的尺寸(1≤N≤1000)。
接下来N行,每行N个整数,范围是0…N^2。
输出格式:
请计算有多少种颜色可能被第一个被画。
输入样例#1:
4
2 2 3 0
2 7 3 7
2 7 7 7
0 0 0 0
输出样例#1:
14