Logo HelloWorld信息学奥赛题库

少儿编程

时间限制:1 s 空间限制:512 MB

#1698. [USACO09JAN]安全出行Safe Travel

Statistics

题目描述

Gremlins have infested the farm. These nasty, ugly fairy-like
creatures thwart the cows as each one walks from the barn (conveniently located at pasture_1) to the other fields, with cow_i traveling to from pasture_1 to pasture_i. Each gremlin is personalized and knows the quickest path that cow_i normally takes to pasture_i. Gremlin_i waits for cow_i in the middle of the final cowpath of the quickest route to pasture_i, hoping to harass cow_i.
Each of the cows, of course, wishes not to be harassed and thus chooses an at least slightly different route from pasture_1 (the barn) to pasture_i.
Compute the best time to traverse each of these new not-quite-quickest routes that enable each cow_i that avoid gremlin_i who is located on the final cowpath of the quickest route from pasture_1 to
pasture_i.
As usual, the M (2 <= M <= 200,000) cowpaths conveniently numbered 1..M are bidirectional and enable travel to all N (3 <= N <= 100,000) pastures conveniently numbered 1..N. Cowpath i connects pastures a_i (1 <= a_i <= N) and b_i (1 <= b_i <= N) and requires t_i (1 <= t_i <= 1,000) time to traverse. No two cowpaths connect the same two pastures, and no path connects a pasture to itself (a_i != b_i). Best of all, the shortest path regularly taken by cow_i from pasture_1 to pasture_i is unique in all the test data supplied to your program.
By way of example, consider these pastures, cowpaths, and [times]:
1--[2]--2-------+ 
|       |       | 
[2]     [1]     [3] 
|       |       | 
+-------3--[4]--4
TRAVEL     BEST ROUTE   BEST TIME   LAST PATH 
p_1 to p_2       1->2          2         1->2 
p_1 to p_3       1->3          2         1->3 
p_1 to p_4      1->2->4        5         2->4 
When gremlins are present:
TRAVEL     BEST ROUTE   BEST TIME    AVOID 
p_1 to p_2     1->3->2         3         1->2 
p_1 to p_3     1->2->3         3         1->3 
p_1 to p_4     1->3->4         6         2->4 
For 20% of the test data, N <= 200. 
For 50% of the test data, N <= 3000. 
TIME LIMIT: 3 Seconds
MEMORY LIMIT: 64 MB
Gremlins最近在农场上泛滥,它们经常会阻止牛们从农庄(牛棚_1)走到别的牛棚(牛_i的目的 地是牛棚_i).每一个gremlin只认识牛_i并且知道牛_i一般走到牛棚_i的最短路经.所以它 们在牛_i到牛棚_i之前的最后一条牛路上等牛_i. 当然,牛不愿意遇到Gremlins,所以准备找 一条稍微不同的路经从牛棚_1走到牛棚_i.所以,请你为每一头牛_i找出避免gremlin_i的最 短路经的长度.
和以往一样, 农场上的M (2 <= M <= 200,000)条双向牛路编号为1..M并且能让所有牛到 达它们的目的地, N(3 <= N <= 100,000)个编号为1..N的牛棚.牛路i连接牛棚a_i (1 <= a_i <= N)和b_i (1 <= b_i <= N)并且需要时间t_i (1 <=t_i <= 1,000)通过. 没有两条牛路连接同样的牛棚,所有牛路满足a_i!=b_i.在所有数据中,牛_i使用的牛棚_1到牛 棚_i的最短路经是唯一的.

输入格式:

Line 1: Two space-separated integers: N and M
Lines 2..M+1: Three space-separated integers: a_i, b_i, and t_i

输出格式:

Lines 1..N-1: Line i contains the smallest time required to travel from pasture_1 to pasture_i+1 while avoiding the final cowpath of the shortest path from pasture_1 to pasture_i+1. If no such path exists from pasture_1 to pasture_i+1, output -1 alone on the line.

输入样例#1:

4 5 
1 2 2 
1 3 2 
3 4 4 
3 2 1 
2 4 3 

输出样例#1:

3 
3 
6