题目描述
给定一个大小为 $n$ 的树,它共有 $n$ 个结点与 $n − 1$ 条边,结点从 $1 \sim n$ 编号。初始时每个结点上都有一个 $1 \sim n$ 的数字,且每个 $1 \sim n$ 的数字都只在恰好一个结点上出现。
接下来你需要进行恰好 $n − 1$ 次删边操作,每次操作你需要选一条未被删去的边,此时这条边所连接的两个结点上的数字将会交换,然后这条边将被删去。
$n − 1$ 次操作过后,所有的边都将被删去。此时,按数字从小到大的顺序,将数字 $1 \sim n$ 所在的结点编号依次排列,就得到一个结点编号的排列 $P_i$。现在请你求出,在最优操作方案下能得到的字典序最小的 $P_i$。
如左图,蓝圈中的数字 $1 \sim 5$ 一开始分别在结点 ②、①、③、⑤、④。按照 (1)(4)(3)(2) 的顺序删去所有边,树变为右图。按数字顺序得到的结点编号排列为 ①③④②⑤,该排列是所有可能的结果中字典序最小的。
输入格式
本题输入包含多组测试数据。
第一行一个正整数 $T$,表示数据组数。
对于每组测试数据:
第一行一个整数 $n$,表示树的大小。
第二行 $n$ 个整数,第 $i$($1 \le i \le n$)个整数表示数字 $i$ 初始时所在的结点编号。
接下来 $n − 1$ 行每行两个整数 $x, y$,表示一条连接 $x$ 号结点与 $y$ 号结点的边。
输出格式
对于每组测试数据,输出一行共 $n$ 个用空格隔开的整数,表示最优操作方案下所能得到的字典序最小的 $P_i$。
样例
input
4
5
2 1 3 5 4
1 3
1 4
2 4
4 5
5
3 4 2 1 5
1 2
2 3
3 4
4 5
5
1 2 5 3 4
1 2
1 3
1 4
1 5
10
1 2 3 4 5 7 8 9 10 6
1 2
1 3
1 4
1 5
5 6
6 7
7 8
8 9
9 10
output
1 3 4 2 5
1 3 5 2 4
2 3 1 4 5
2 3 4 5 6 1 7 8 9 10
数据范围与提示
测试点编号 | $n\le $ | 特殊性质 |
---|---|---|
$1\sim 2$ | $10$ | 无 |
$3\sim 4$ | $160$ | 树的形态是一条链 |
$5\sim 7$ | $2\times 10^3$ | 树的形态是一条链 |
$8\sim 9$ | $160$ | 存在度数为 $n − 1$ 的结点 |
$10\sim 12$ | $2\times 10^3$ | 存在度数为 $n − 1$ 的结点 |
$13\sim 16$ | $160$ | 无 |
$17\sim 20$ | $2\times 10^3$ | 无 |
对于所有测试点:$1 \le T \le 10$,保证给出的是一个树。