题目描述
给定一个长度为 $n$ 的整数数列,里面的元素依次编号为 $a_1,a_2,a_3,\cdots,a_n$。初始的时候,所有元素都为零。现在按照时间顺序提供了若干次关于这个数列的修改或询问,每一次修改或询问一定为以下六种情况之一:
- $1\ i\ \text{val}$:将 $a_i$ 赋值为给定整数 $\text{val}$;
- $2\ \text{val}$:将所有元素同时加上 $\text{val}$;
- $3\ \text{val}$:将所有元素同时乘上 $\text{val}$;
- $4\ \text{val}$:将所有元素同时赋值为 $\text{val}$;
- $5\ i$:询问第 $i$ 个元素 $a_i$ 现在的值是多少;
- $6$:询问现在所有元素的和。
输入格式
为了避免读入太大,输入文件采取如下的形式。
第一行给定整数 $n$,表示给定数列长度为 $n$。
第二行给定整数 $q$,并且之后的 $q$ 行,每一行提供一个修改或询问,输入的格式与题目所述一致,请参见样例。
我们称上述给定的修改或询问为标准操作。
之后给定一个整数 $t$,并且之后的 $t$ 行每行给定两个正整数 $a_i$ 和 $b_i$,这里的下标 $i$ 依次记为 $1$ 到 $t$。
你需要对初始值全为零的长度为 $n$ 的序列做总计 $t\times q$ 次操作。
其中第 $\Big((i-1)q+j\Big)$ 次操作形如第 $\Big((a_i + j b_i) \bmod{q} + 1\Big)$ 个给定的标准操作($1\le i\le t$ 且 $1\le j\le q$)。
输出格式
输出一个整数,表示所有询问答案的累计和。
因为答案可能很大,只要求输出其结果关于 $p=10^7+19$ 取模后的值。
注意:若最终的累计和 $\text{ans}$ 小于零,你应该输出 $\big((\text{ans} \bmod{p})+p\big)\bmod{p})$。
样例
input
7
28
6
4 -192321079
3 418379342
1 3 189801569
3 -840249197
4 -751917965
3 649799919
1 5 -92666141
6
4 451258008
5 1
4 696880327
3 772574465
6
4 301010289
3 480168068
5 3
5 2
4 840536237
5 5
5 4
1 7 -792284106
2 604521872
3 966540578
2 -381646699
3 -939378260
2 -20129935
6
2
0 1
197 199
output
2816930
数据范围与提示
子任务 $1$($50$ 分):$1\le n\le 500000$,$1\le q\le 10^5$ 且 $1\le t\le 5$,所有在输入中出现的 $\text{val}$ 满足 $-10^9\le \text{val}\le 10^9$,所有 $a_i$ 和 $b_i$ 满足 $0\le a_i,b_i\le 10^9$。
子任务 $2$($50$ 分):$1\le n\le 10^9$,$1\le q\le 10^5$ 且 $1\le t\le 100$,所有在输入中出现的 $\text{val}$ 满足$-10^9\le \text{val}\le 10^9$,所有 $a_i$ 和 $b_i$ 满足 $0\le a_i,b_i\le 10^9$。