Logo HelloWorld信息学奥赛题库

少儿编程

时间限制:1 s 空间限制:512 MB

#2975. 「JSOI2016」病毒感染

统计

题目描述

JOSI 的边陲小镇爆发了严重的 Jebola 病毒疫情,大批群众感染生命垂危。计算机科学家 JYY 采用最新的算法紧急研制出了 Jebola 疫苗,并火速前往灾区救治患者。

一共有 $N$ 个小镇爆发了 Jebola 疫情。这些小镇由于地处边陲,仅仅通过一条长直公路连接。方便起见我们将这些小镇按照公路连接顺序由 $1$ 编号到 $N$。JYY 会在第一天一早抵达 $1$ 号小镇。

一开始在 $i$ 号小镇,有 $a_i$ 名患者感染了 Jebola 病毒。

每一天 JYY 可以选择:

  1. 花费一天时间彻底治愈 JYY 目前所在的村庄的所有 Jebola 患者。这一天不会有任何患者死去;
  2. 花费一天的时间前往一个相邻的村庄。

当一天开始时,如果一个村庄里有 $k$ 个 Jebola 患者,那么这一天结束时,这 $k$ 个患者会感染另外 $k$ 个这个村子里的健康村民并死去。所以对于 $i$ 号村庄,只要这个村庄没有被 JYY 彻底消灭疫情,那么每一天都会有 $a_i$ 个村民死去。

JYY 希望采用措施使得疫情被整体消灭时,总共死去的村名数量尽量少。

为了达成这一目标,JYY 有时会选择抵达一个村庄但是并不对村民进行施救。这样的行为如果不加限制,往往会造成更加严重的后果。

试想这样的情形:假设当 JYY 第一次抵达村庄 $i$,未作救治并直接前往了另一个村庄。那么由于 $i$ 村庄的人们求生心切,一旦当 JYY 朝向靠近 $i$ 村庄的方向前行时,$i$ 村庄的村民就会以为 JYY 是来救他们了,而产生巨大的期望。之后倘若 JYY 再次掉头朝着远离 $i$ 村庄的方向行进,那么 $i$ 村庄的村民就会因为巨大的失落而产生绝望的情绪。

为了避免这种情况,JYY 对他的行程做了如下规定:

假设 JYY 进入 $i$ 村庄并在第二天立即离开(村庄 $i$ 的疫情并未治愈)。如果在之后的某一天,JYY 从村庄 $j$ 前往村庄 $k$,并满足 $|k-i|\lt |k-j|$。那么在之后的日子里 JYY 只能朝着 $i$ 村庄前进直到抵达 $i$ 村庄并立即治愈该村的患者。在前往 $i$ 村庄的过程中,JYY 可以选择将途经村庄的疫情治愈。

比如,如果 JYY 有如下行程:

第一天:从村庄 $1$ 前往村庄 $2$;
第二天:从村庄 $2$ 前往村庄 $3$;
第三天:治愈村庄 $3$;
第四天:前往村庄 $2$。

此时 JYY 对于之后三天的行程只有唯一一种选择:

第五天:治愈村庄 $2$;
第六天:前往村庄 $1$;
第七天:治愈村庄 $1$。

JYY 想知道在治愈所有村庄之前,至少会有多少村民因 Jebola 死去。

输入格式

输入第一行包含一个正整数 $N$;
接下来一行包含 $N$ 个整数,分别为 $a_1,a_2,\cdots ,a_N$。

输出格式

输出一行一个整数,表示最优行程安排下会死去的村民数量。

样例

input

6
40 200 1 300 2 10

output

1950

我们用 $C(k)$ 表示治愈 $k$ 号村庄,$i\to j$ 表示从村庄 $i$ 前进到村庄 $j$,用逗号分隔每一天的行程安排,那么样例中的最优策略为: $$1\to 2,C(2),2\to 3,3\to 4,C(4),4\to 3,C(3),3\to 2,2\to 1,C(1),1\to 2,2\to 3,3\to 4,4\to 5,5\to 6,C(6),6\to 5,C(5)$$

整个过程耗时 $18$ 天。

数据范围与提示

对于 $10\%$ 的数据,满足 $N\le 10$;
对于 $30\%$ 的数据,满足 $N\le 20$;
对于 $50\%$ 的数据,满足 $N\le 60$;
对于 $100\%$ 的数据,满足 $1\le N\le 3000,1\le a_i\le 10^9$。