题目描述
小雪和小可可被困在了一个无限大的迷宫中。
已经知道这个迷宫有 N 堵环状的墙,如果把整个迷宫看作是一个二维平面,那么每一堵墙都是平面上一个圆。任意两个圆不相交,不重合,也不会相切, 但有可能相互包含。小雪和小可可分别被困在了 2 个不同的位置,且保证他们的位置与这些圆不重合。
他们只有破坏墙面才能穿过去。
小雪希望知道,如果他们要相见,至少要破坏掉多少堵墙?他们可以在任何位置相见。
输入格式:
第一行有一个整数 N,表示有多少堵墙,保证 0<=N<=8000。
之后 N 行,每一行有三个整数 x, y 和 r,表示有一堵环状的墙是以(x,y)为圆形, r为半径的。保证-100000000<=x,y,r<=100000000。
再下一行有一个整数 Q,表示有多少组询问,保证 1<=Q<=8000。
之后 Q 行,每一行有 4 个整数 a, b, c 和 d,给出了一组询问,表示小雪所在的位置为(a,b),小可可所在的位置为(c,d)。保证-100000000<=a,b,c,d<=100000000。
输出格式:
输出 Q 行,对应 Q 次询问,每一行输出一个整数,表示最小需要破坏掉多少堵墙才能相见。
输入样例#1:
3
0 0 1
3 0 1
2 0 4
1
0 0 3 0
输出样例#1:
2
输入样例#2:
3
0 0 1
0 0 2
4 0 1
2
0 0 4 0
0 0 0 4
输出样例#2:
3
2